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Abstract

In the ever-expanding complexities of the modern-day mining workplace, the continual monitoring 

of a safe and healthy work environment is a growing challenge. One specific workplace 

exposure concern is the inhalation of dust containing respirable crystalline silica (RCS) which 

can lead to silicosis, a potentially fatal lung disease. This is a recognized and regulated 

health hazard, commonly found in mining. The current methodologies to monitor this type of 

exposure involve distributed sample collection followed by costly and relatively lengthy follow-

up laboratory analysis. To address this concern, we have investigated a data-driven predictive 

modeling pipeline to predict the amount of silica deposition quickly and accurately on a filter 

within minutes of sample collection completion. This field-based silica monitoring technique 

involves the use of small, and easily deployable, Fourier transform infrared (FTIR) spectrometers 

used for data collection followed by multivariate regression methodologies including Principal 

Component Analysis (PCA) and Partial Least Squares (PLS). Given the complex nature of 

respirable dust mixtures, there is an increasing need to account for multiple variables quickly 

and efficiently during analysis. This analysis consists of several quality control steps including 

data normalization, PCA and PLS outlier detection, as well as applying correction factors based 

on the sampler and cassette used for sample collection. While outside the scope of this article 

to test, these quality control steps will allow for the acceptance of data from many different 

FTIR instruments and sampling types, thus increasing the overall useability of this method. 

Additionally, any sample analyzed through the model and validated using a secondary method 

can be incorporated into the training dataset creating an ever-growing, more robust predictive 

model. Multivariant predictive modeling has far-reaching implications given its speed, cost, and 

scalability compared to conventional approaches. This contribution presents the application of 

PCA and PLS as part of a computational pipeline approach to predict the amount of a deposited 
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mineral of interest using FTIR data. For this specific application, we have developed the model to 

analyze RCS, although this process can be implemented in the analysis of any IR-active mineral, 

and this pipeline applied to any FTIR data.
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analysis; silica; silica exposure

1. Introduction

The inhalation of respirable crystalline silica (RCS) can lead to a potentially fatal disease 

called silicosis. Silicosis is a fibrotic lung disease characterized by the phagocytosis of 

crystalline silica within the lung resulting in lysosomal damage and the impairment of 

normal lung function. The creation of fibrotic tissue continues to trigger the inflammatory 

cascade which creates a feedforward cycle and can impair lung function even after an 

individual is no longer exposed to silica (Leung et al., 2012). In the United States, there are 

approximately two million workers in the construction industry and another three hundred 

thousand in other industries who are exposed to RCS. In the United States, the National 

Institute for Occupational Safety and Health (NIOSH) has a recommended exposure limit 

of 50 μg/m3, and the Occupational Safety and Health Administration (OSHA), which sets 

the regulatory limits, requires sampling for RCS with a recommended exposure limit of 50 

μg/m3 for up to a 10-hour workday and 40-hour workweek. Additionally, the Mine Safety 

and Health Administration (MSHA) has an RCS permissible exposure limit that equates to 

100 μg/m3. In the mining environment, the amount of airborne RCS can be determined using 

portable, wearable sampling instruments, which unfortunately do not currently produce data 

in real-time but allow for end-of-shift analysis of the average quartz concentration by FTIR 

to assess a worker’s exposure. Previous research has outlined the methodology for field-

based detection of RCS utilizing portable Fourier transform infrared (FTIR) spectrometers 

for direct-on-filter (DOF) analysis of respirable dust samples (Miller et al., 2012, 2013; 

Cauda et al., 2016, 2018; Hart et al., 2018; Ashley et al., 2020).

Current silica monitoring methods for the laboratory analysis of respirable dust samples is 

considered accurate, but it comes with the potential downsides of mineral interference, high 

cost considering numerous sample analysis, multiple days to weeks of waiting to receive 

results, and this analysis cannot traditionally be done on-site. For the field-based method, 

all the downsides have the potential to be addressed using portable FTIR in conjunction 

with predictive modeling. While not as accurate as a controlled lab-based data collection 

environment (Hart et al., 2018), the implementation of field-based methods (portable FTIR) 

brings fast, high-quality data collection to the field and provides the potential for further 

downstream data analysis methods like predictive modeling. Portable FTIR does come with 

the cost of potential accuracy issues in data interpretation when compared to current silica 

monitoring methods and lacks the presence of an expert analyst who is familiar with this 

analytical technique like a traditional silica analysis would have. Recently, researchers from 

around the world have turned to the use of chemometrics to help increase RCS analysis 
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accuracy using portable FTIR data (Weakley et al., 2014; Miller et al., 2017; Stach et al., 
2020; Wei et al., 2020; Salehi et al., 2021; Stach et al., 2021).

The most used peak for silica determination is 800 cm−1 which results from the absorption 

of those frequencies by the stretching of the Silicon–Oxygen (Si–O–Si) bond. However, 

this same stretching absorbs similar energy in other forms of silica and silicates (Ojima, 

2003), where the same bond is present in different configurations. To complement the 800 

cm−1 peak, many analysis methods utilize the quartz doublet that occurs at approximately 

767–816 cm−1, which accounts for the major bands at 780 and 800 cm−1 (Foster and Walker, 

1984). Other minerals are known to have bands close to 800 cm−1 such as cristobalite, 

tridymite, and amorphous silica and are included in analytical methods such as NIOSH 

7603/MSHA P7 as known confounder minerals. Given the complex nature of respirable dust 

mixtures in mining (Walker et al., 2021), there is an increasing need to account for multiple 

variables quickly and efficiently during analysis. As RCS regulatory limits continue to 

decrease the ability to measure accurately and reproducibly for more complex samples with 

lower RCS is needed to make sure lower standards in the future are able to be monitored 

and analyzed correctly. Multivariate regression methodologies like Principal Component 

Analysis (PCA), Principal Component Regression (PCR), and Partial Least Squares (PLS) 

are employed in a variety of analytical fields and are commonly used for predicting 

measurement values (Pottel, 1995; Rahman et al., 2014; Camacho et al., 2016). One of 

the main reasons that these models have been developed is to confront the ever-growing 

probability that there are many more predictor variables than there are samples. The use of 

predictive modeling is a huge benefit when the variables that are being predicted are costly, 

time-consuming, or laborious to produce in other ways.

Combining the benefits of portable FTIR with chemometric modeling techniques can solve 

the problem of accuracy and still maintain the cost and time benefits awarded by portable 

FTIR methods. One of the main goals for the development of this computational framework 

or pipeline is to make the process and interface user-friendly and be universally applicable 

to all samples. In computing, a pipeline is a computational or data processing framework 

that streamlines the process of moving data from a raw format to a more analyzed format 

through a series of analytical pathways that are laid out in a reproducible and simplified way. 

Utilizing open-source products and publicly archiving the code allows for full transparency 

of the methods employed and for further development from sources outside the authors 

of this article. The implementation of this method should be easily deployable for any 

user regardless of their experience with multivariate modeling, computer science, or RCS 

analysis. Additionally, it is intended for this pipeline to be used as a backbone for future 

modeling efforts which can be implemented for minerals other than silica of a new type of 

data is generated.

With the creation of this analytical pipeline, we intend to create and explore the practicality 

of a pipeline that can predict the amount of RCS deposited on a filter (Figure 4). These 

modeling efforts rely heavily on the previous research into the field of RCS and portable 

field-based FTIR sample collection and aim to progress the field further down the path of 

near real-time hazard monitoring. In this article, we employ both PCA for outlier detection 

and PLS for predictive modeling all done in the MATLAB environment using a user-friendly 

Wolfe et al. Page 3

Ann Work Expo Health. Author manuscript; available in PMC 2022 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



GUI interface called PLS_toolbox. The data was preprocessed via mean-centering and cross-

validated using venetian blinds with 10 splits. The methods and final models put forward 

here do not solve all issues related to the development and implementation of a multivariate 

RCS prediction model, but the need to document the development of the pipeline as the 

methods progress is understood.

2. Methods

Respirable dust samples were collected during laboratory studies at the NIOSH Pittsburgh 

Mining Research Division (PMRD) facilities and were used to investigate the development 

of multivariate chemometric predictive models. The samples were the product of three 

distinct sampling protocols, ultimately creating three distinct datasets. Characteristics of the 

samples from each group are summarized in Table 1.

Dust investigated

Respirable samples of crystalline silica were prepared from Minusil 5 and Minusil 10 

ground silica (U.S. Silica, Frederick, MD), which is reported by the manufacturer to be 

95%–99.9% crystalline. The mass median particle diameter is 1.6 μm and 3.4 μm for the two 

powders when aerosolized, respectively, as measured with an Aerodynamic Particle Sizer 

(3321, TSI, Sant Paul, MN). To create samples as mixtures of two minerals, minusil 5 was 

used as reliable and high-purity quartz material, and 13 other mineral mixtures (previously 

identified in mine dust samples) were used as confounders: Albite, Amorphous silica, 

Anorthite, Chlorite, Cristobalite, Dolomite, Kaolinite, Magnetite, Muscovite, Oligoclase, 

Pyrite, Talc, and Tridymite. Additional information regarding the purity, source, processing, 

and other relevant details for the confounding minerals can be found in Supplemental Table 

1. The confounding minerals did not contain crystalline silica which was confirmed using 

X-ray Diffraction (XRD). Each mineral was independently layered during separate sampling 

on top of the minusil 5 at varying ratios and then analyzed in the same way as the minusil 

samples. Multiple samples for each mineral were taken ranging from 0 – 1700 μg to closely 

mimic the distribution seen in the quartz samples (0 – 1500 μg) and evenly spread the 

confounding mineral data throughout the model.

Collection of samples

The samples for the three sampling protocols were collected in an aerosol chamber with the 

size of 71 cm × 66 cm × 56 cm. For protocols 1 and 3, the dust was aerosolized using a 

fluidized bed aerosol generator (model 3400 A, TSI, Shoreview, MN). For protocol 2, due 

to the limited amount of the mineral materials, the dusts were introduced into the aerosol 

chamber using a 250-mL flask closed by a rubber stopper. The stopper had two ports into 

which two steel tubes were connected; one tube let airflow into the flask to aerosolize the 

dust, and the other tube sucked aerosol from the flask into the aerosol chamber. For most 

of the sampling testing, the aerosol passed through a Kr-85 aerosol neutralizer (Model 3012 

A, TSI, Shoreview, MN) before being introduced through the top of the chamber. A stable 

dust concentration within the chamber was maintained through each test by balancing the 

inlet airflow rate and the negative force induced by a fan at the bottom of the chamber. A 

high efficiency particulate air filter was present at the bottom of the chamber in front of the 
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exhaust fan. A slight negative pressure was maintained in the chamber, and the respirable 

dust concentration was monitored by a tapered element oscillating microbalance (TEOM) 

(model 1400 A, Thermo Scientific, Waltham, MA).

Respirable dust samples were collected using 10-mm nylon Dorr-Oliver cyclones at a 

flow rate of 1.7 lpm for protocols 1 and 2. For protocol 3, samples were collected using 

six different samplers (Dorr-Oliver, Sensidyne Dorr-Oliver, conductive Dorr-Oliver, GS3, 

GK2.69, or Aluminum). The standard flow rate for each sampler was used (Baron, 2016). 

Dust samples were always collected on 37-mm, 5-μm pore PVC filters (SKC Inc., Eighty 

Four, PA). The sampling filters in protocol 1 were housed in four-piece conductive cassettes 

with a metal support ring (Chubb and Cauda, 2021). During protocol 2, the sampling filter 

was housed in a three-piece styrene cassette with a cellulose support pad (SKC Inc., Eighty 

Four, PA). Finally, for protocol 3, to also examine the effects the cassette type may have 

on predictive modeling, samples were collected using either a four-piece conductive cassette 

with a metal support ring or a three-piece styrene cassette with a cellulose support pad. 

Each sampler was placed inside the chamber and connected to a sampling pump (SKC 

AirChek TOUCH pump) placed outside the chamber. Sampling ports on the side of the 

chamber allowed the connection. Sampling pumps were shut off when a target loading 

was reached. The collection of the desired sample was carried out in one single sampling 

event for protocols 1 and 3. For protocol 2, quartz was first sampled, and then the second 

mineral phase was sampled as an additional layer on the same filter after gravimetric and 

spectroscopic analysis of the quartz samples were conducted.

Analysis of samples

Gravimetric analysis was done for the blank filters and loaded samples to determine the 

gravimetric mass of the sample. In the case of protocols 1 and 3, this is considered 

the reference quartz value and is used as the Y variable when training the predictive 

models. For protocol 2, the gravimetric analysis of only quartz is used as the Y variable. 

All filter samples were pre- and post-weighed in a temperature- and humidity-controlled 

weighing room using a model XP2U microbalance (Mettler Toledo, Columbus, OH). 

The sample sets included approximately 5% lab blanks to verify accurate measurement 

from the microbalance. Analysis of blanks indicated an average gain of 1 ± 2 μg. The 

standard deviation (SD) of the blanks gives a good indication of both the limit of detection 

(LOD) and limit of quantification (LOQ). Analytical best practices indicate that LOD 

= SD(blanks)*3 and LOQ=SD(blanks)*5 which equates to a LOQ of around 15 μg. 

Following gravimetric analysis, samples were analyzed on a portable transmission infrared 

spectroscopy instrument (ALPHA model, Bruker Optics, Billerica, MA); each sample 

spectrum consisted of 16 co-added scans (total analysis time of approximately 20 seconds) 

collected at a resolution of 4 cm−1 using Blackman Harris apodization. The resulting spectra 

for each dust sample is used as the X variable for the chemometric modeling. Each sample 

was inserted in the instrument so that the instrument’s IR beam passed through the center 

portion of each sample. Following FTIR analysis, the data was opened in Essential FTIR 

(Operant LLC, Monona, WI), then exported into Excel (Microsoft Inc.), and the background 

spectrum (clean filter before sample collection) was subtracted from the final spectrum. 

The collection of the background spectrum, necessary for testing the preprocessing of each 
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sample, was carried out in a variety of ways. For protocol 1, the same filter media before 

sampling was used as the background to allow for the background removal of the FTIR 

spectrum unique to each filter for the samples from each dataset. For protocols 2 and 3, a 

blank PVC filter (from the same lot as the sample filters) was used as the background. For 

protocol 2, both gravimetric and FTIR analyses were performed multiple times to generate 

data from the quartz only as well as the quartz with the addition of the confounding mineral.

Modeling of the data

The primary objective of all modeling in this study is the prediction of the amount of quartz 

in each sample. As stated above, the gravimetric mass of quartz in the sample is used as 

the Y variable when modeling, and the FTIR spectrum values are used as the X variable. 

For the entirety of the data presented in this article, all principal component analysis (PCA) 

and partial least square (PLS) modeling was done in MATLAB using PLS_ toolbox (v8.9.1; 

https://eigenvector.com/software/pls_toolbox-and-solo-interfaces/). Secondary validation for 

the PLS models was run using the Partial Least Squares and Principal Component 

Regression package (v2.7.3; https://github.com/bhmevik/pls) in the programming language 

of R which resulted in very similar results, and for the sake of brevity are not discussed. 

The first step in the modeling is to center the spectral data to its mean value and derive a 

novel set of coordinates (eigenvectors) which are used for downstream analysis. Next, the 

model discerns features within the spectrum that are the most variable between samples in 

the dataset and isolates them into components. These unique features, or components, are 

reduced to the smallest possible number while only retaining a select number of components 

that have the largest influence on the inter-sample variance and are defined as principal 

components (PCs) when running PCA or latent variables (LVs) when running PLS. As a 

first step in the modeling process, PCA was implemented which looks for a few linear 

combinations of variables that can be used to summarize the data without sacrificing too 

much information in the process. The data used to build the models found in this manuscript 

were generated in a laboratory environment using the same machine every time which 

makes it unlikely for a sample generated in house using the same testing conditions to be 

flagged as an outlier using PCA. This, however, remains a critical step in any prediction 

modeling endeavor and should not be overlooked as a sample that is flagged as an outlier 

using PCA will give an erroneous prediction for that sample and should not be allowed to 

progress down the pipeline to the prediction steps. As PCA is an unsupervised method of 

dimensionality reduction, it is used first to identify broad abnormalities within the dataset 

and detect any outliers that may be present. PCA assigns no importance to the relationship 

between the X and Y variables, which is what makes it unsupervised, while PLS relies 

heavily on the relationship between the X and Y variables. The main application of our 

chemometric modeling is using our known X and Y variables to predict unknown samples, 

and in this application, PLS is much better suited. PLS builds the LVs using the raw X 

variables as well as the relationship between the X and Y variables to relate a select number 

of underlying factors to the Y variable.

A normalization step was created wherein the raw data received from the FTIR is forced to a 

fixed number of wavenumber variables to account for data coming from various sources, all 

of which have different data densities regarding wavenumber. To accomplish this, a spline 
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is fit to the data using the inbuilt spline function in R, and a fixed number of data points is 

extrapolated and used as wavenumbers for all further analysis. The density of the data did 

not impact the prediction accuracy of the overall model when the data was reduced to 500 

variables, or when the data was increased to 10,000 variables. Increasing the data density 

does, however, impact the computation time required for the PLS prediction. As all of the 

data used to train the models at this stage was generated using the same FTIR instrument 

the normalization step was not necessary, and all data is at the default output for the Bruker 

ALPHA model of 1,765 variables for all models discussed.

3. Results

The first evaluation of the data was aimed to test out potential preprocessing methodologies 

and to accomplish this using the minusil 5 dataset. A small model was created using these 

spectra and used to compare various blank subtractions and baseline correction methods 

(Figure 1). The baseline for this comparison was the raw spectrum for each sample, which is 

the spectrum generated by the FTIR analyzer, and based on the analysis setup it still includes 

the effect of the filter matrix. The first preprocessing approach tested was subtracting the 

spectrum of the blank filter used for sample collection. This is performed to remove the 

matrix effects caused by the IR absorption of the filter media, leaving just the spectrum 

of the collected dust to be analyzed. This approach improved the absolute error (|measured 

quartz − predicted quartz| μg) compared to the raw spectra samples, but not significantly. 

Baseline correction was then implemented to the raw sample and the blank subtracted 

sample, both of which reduced the prediction error, but the beneficial effects were not 

significant. Since in practice the spectral profile of the filter pre-collection is not always 

available, the effects of alternative methods of filter subtraction were tested. All the filter 

blank spectra were used to average the spectra together at each wavenumber creating a 

spectrum that was representative of all the blanks, which was used as an average blank. 

Subtracting a random blank as well as subtracting the average blank both significantly 

diminished the predictive capacity of the model compared to the raw data, while subtracting 

out the closest blank by filter weight marginally increased the predictive capacity. With 

the best average absolute errors (blank subtracted with baseline correction) and the worst 

average absolute error (random blank subtraction), both having relatively good absolute 

error values of 8.63 μg and 5.39 μg respectively, it was thought to be best to keep all spectra 

in the raw form and apply no preprocessing before the modeling investigation.

The first series of data that were considered for the development of predictive models for 

quartz was comprised of two sets of minusil 5 data and one minusil 10 dataset (protocol 

1). Initially, each of the three smaller datasets was modeled independently but were quickly 

pooled together as we found the root mean squared error of calibration (RMSEC) was much 

lower than the larger the training dataset. Additionally, there were no major differences 

when comparing a sample against the minusil 5 or minusil 10 models independently. The 

first model implemented is called Model 1 (M1) and is comprised of the full spectrum 

400–4000 cm−1 from the combination of the minusil 5 and minusil 10 data (n263). We next 

thought that we could improve the RMSEC of the model if we cut out all the variables 

of the IR spectra that are not providing information relevant to the quartz prediction and 

thus created our second model (M2). This area narrows in on the quartz doublet feature 
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that occurs at approximately 767–816 cm−1, which results from stretching of the Si–O 

bond. Using the same samples and simply narrowing in on the quartz doublet region of the 

spectrum marginally improved the RMSEC as well as the average absolute error (Figure 

2A–B). With an average absolute error of around 6.5 μg, M1 and M2 predict well, the goal 

was to increase the training data as well as samples with a higher loading of quartz.

The way the data was generated from protocol 2 allowed for the acquisition of initial FTIR 

spectra when only quartz was present on the filter followed by quartz and a confounding 

mineral. The third and fourth models (M3 and M4) use the quartz only spectra to further 

increase the training data up to 583 samples and add samples with a much higher quartz 

loading (from protocol 1–2). These additions ultimately increase the RMSEC as well as 

the average error compared to M1 and M2, but this effect is predominantly driven by the 

addition of the higher loading samples (Figure 2C–D). Higher loading samples are classified 

as any sample with > 300 μg quartz and by nature skew the absolute error higher and the 

percent error lower than samples at a much lower loading (1000 μg sample with 10% error 

is ± 100 μg, while a 100 μg sample ± 10% is only 10 μg). Interestingly, M4 had the lowest 

percent error of all four models being significantly lower than both M3 and M2, which 

is mostly due to more accurate predictions in the lower quartz loading samples (<100 μg, 

Figure 2H–J). As expected M4, which is the quartz doublet region, predicted better than its 

full spectrum counterpart M3 with significant reductions in both absolute error and percent 

error (Figure 2E–J). As the training data within any given model begins to account for higher 

loading samples, the RMSEC and average error both increase, while the percent error falls. 

Additionally, the opposite is true wherein if the models were capped to only include samples 

less than 200 μg the RMSEC and average error both would decrease, while the percent 

error would increase. Supplemental Figure 1A–D shows the PCA scores across LV 1 and 

LV 2 along with the Q residual (Qres) and Hotelling’s T2 (T2) scores for each model. Both 

M2 and M4 are limited to only the quartz doublet and as such have much higher variance 

captured by LV1 since the data is truncated to the area that has the most inter-sample 

variance compared to M1 and M3.

The second series of data implemented into the modeling was to include data generated from 

combining minusil 5 with a second mineral. These additional 237 samples, generated from 

unique combinations of minusil 5 with one of the 13 confounding minerals, were added to 

the 583 from M3 and M4 before and used to create a full spectral model (M5) as well as 

a quartz doublet model (M6). As with each of the models before, M6 outperforms M5 in 

all metrics further confirming that the analysis of the quartz doublet yields a more accurate 

prediction than the analysis of the full spectrum (Figure 3A–D). The confounder models 

have much higher Qres and T2 values compared to the quartz-only models (Supplemental 

Figure 1E–F) due to the inclusion of different minerals modifying the shape and intensity 

of the quartz doublet. When comparing M6 to M4, the RMSEC, average error, and percent 

error all go up with the inclusion of the confounder data, but not significantly. This indicates 

that the inclusion of a more complex dust mixture allows for the model to be trained on a 

more diverse dataset without sacrificing the integrity of the quartz prediction.
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4. Discussion

The goal of the data presented in this article is to create and train a multivariate model 

capable of predicting the amount of quartz deposition on a filter without compromising 

on laboratory analysis accuracy. As we continued to train and test our models, the need 

to document and create a systematic pipeline of steps that allow for this to happen in a 

streamlined and user-friendly way. Figure 4 is the proposed pipeline that is built around 

the use of parts of the above-discussed models along with data normalization and quality 

control steps. One of the main goals of the study was to simplify the process as much 

as possible and with no immediate significant improvement to the prediction when doing 

either baseline correction or blank filter subtraction the simplest path does not include 

any data preprocessing steps. For the testing of these models, three metrics predominantly 

were relied upon: RMSEC, average error, and percent error to lay the groundwork for the 

pipeline, and all the samples in the training data are synthetic mixtures of known quartz 

amounts. Using these three metrics allows for the observation of the model as a whole and 

for determining the overall fit and predictive capacity. Within a model, the use of the PCA 

scores, Qres, and T2 were all used to identify specific samples flagged as outliers compared 

to the model. Potential outliers could arise in this type of data at the time of sample 

collection, or FTIR analysis and often are hard to identify without the use of unsupervised 

learning methodologies like PCA, which can find samples that are outliers for reasons that 

are identifiable or unknown as well. Outliers might arise during sample collection through 

nonsymmetric deposition of respirable dust due to sampler malfunction or during FTIR 

analysis by incorrect placement or alignment of sample within the instrument. These quality 

control (QC) steps and parameters will ultimately become the first steps in the pipeline to 

assess that any sample put into the model fits well enough to have a degree of confidence in 

the resulting quartz prediction.

Following the normalization step laid out in the Methods section, the second step is 

to compare the sample in question to the full spectral model build using 583 samples 

containing either minusil 5 or minusil 10. This initial step is a broad comparison in 

which the model can easily determine if there were any problems in the acquisition or 

normalization of the data. First, a principal component analysis (PCA) step is performed 

to ensure that the sample falls within the allotted confidence 95% interval. If the sample 

passes the PCA step, it moves on to the partial least squares model where Qres and T2 

values are created for the sample. T2 and Qres are summary statistics that are used to 

inform about how well a model fits a given sample and why that sample is assigned its 

scores. Qres indicates how well each sample conforms to the model and is a measure of 

the difference between the sample and its projection through the model. In contrast to Qres, 

which represents the amount of variation retained after projection through the model, the T2 

value indicates a measure of the variation within the model. These two scores represent a 

measure of goodness of fit between the sample and the model with lower scores indicating 

the data and model exhibit similar patterns across the PCs or latent variables retained in 

the model. In addition to exploratory analysis and dimensionality reduction, PCA is often 

used as a method of outlier detection in chemometrics. PCA analysis will assign a score for 

each sample to indicate how far the sample is from the centroid of the elliptical center that 
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includes most of the data. This score in conjunction with the Qres and T2 allows for robust 

quality control (QC) metrics generated for each sample before any modeling begins. A series 

of the above-discussed models and QC metrics were implemented into our current analysis 

pipeline as graphically depicted in Figure 4. Within the second step of the pipeline is an 

additional model (M5) which is comprised of the same 583 samples with an additional 237 

samples (820 total) that were a mixture of minusil with one of the 13 confounding minerals. 

As can be seen in Figure 5B and D, the model containing the confounding minerals has 

much more spectral variability and represents a more complex dust environment.

If the sample passes the first QC step, it moves on to the third step in the pipeline which 

is the QC step specific to the quartz doublet region of the spectra. The sample progresses 

through the same PCA and PLS steps as before but is no longer looking for broad spectral 

anomalies but is specifically targeting the quartz signature region and assessing sample 

integrity compared to the model. Once again, the addition of the confounding minerals 

(M6) in the 820 model increased the variability found in the spectra compared to the 583 

quartz-only model (Figure 5B, D). If the sample passes all the quality control steps, the 

final prediction is made using PLS on the 583 quartz-only quartz doublet region model. This 

gives the cleanest and most accurate prediction and can be compared to the predicted result 

generated from the 820 model to indicate the potential impact of confounders. If the two 

models predict very similar results, then it is less likely that there are confounding minerals 

in the sample, while if the two models differ significantly in their prediction, then that can be 

also used as an indication of the potential presence of confounders.

The study has known limitations. The current training of the models has all been done on 

samples generated in the laboratory under very controlled conditions. This allows for greater 

certainty as to the true quartz gravimetric value for each sample but comes at the cost of 

reducing sample complexity. To combat that and to add some robustness into the model, the 

mixtures of quartz and one of the 13 confounding minerals were included. As can be seen in 

Figures 5 and 6, this increases the diversity of the shapes and intensity of the FTIR spectrum 

while still allowing high confidence in the true quartz amount in each sample. This artificial 

complexity pales in comparison to the complexities seen from real-world dust samples but is 

a way to gradually add complexity to the training data while still retaining a high degree of 

confidence in the reference quartz value (Walker et al., 2021). Using a combination of FTIR, 

XRD, and standard addition techniques, the plan is to begin creating and validating a model 

which is comprised solely of real-world mine dust samples and be able to incorporate this 

model into the pipeline for another layer of predictive power. The FTIR analysis (performed 

on a respirable mine dust sample deposited on a PVC filter) will provide the FTIR test 

spectra (the X variables). The combination of XRD and standard addition calibration will 

produce a more accurate silica reference value (the Y variables) for the sample compared 

with other techniques, such as standardless XRD analysis. In all the models, most of the 

error is derived from the samples with higher quartz loadings and improved RMSEC and 

average error when limiting each of the models to only include data with less than 300 μg of 

quartz which would be more indicative of a real-world actionable exposure.

There are a nearly unlimited number of downstream modifications to make to the pipeline 

along with the addition of mine dust samples to improve prediction accuracy. The first 
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and easiest to implement would be to continually increase the number of samples in the 

training data. The more data the model has access to the higher the confidence will be in 

the prediction. The model as it is now does not incorporate any form of baseline correction 

because it was felt to be best to keep the data as close to the raw FITR spectrum as possible. 

This is one area of potential improvement which can be coded into the normalization steps 

of the pipeline and allow for the potential for a recalibration of samples to match the settings 

and type of FTIR instrument used to generate the calibration data. Additionally, by using 

the difference between the prediction of the quartz only and the quartz + confounders 

models (M4 and M6) and the Qres and T2 from the quartz-only model, the general 

level of confounders can be determined. If a sample is classified as having a high level 

of confounders in the quartz doublet region, the model could potentially fall back onto 

secondary or tertiary spectral regions to make a more accurate prediction.

Previous research (Cauda et al., 2014) lead us to additionally generate data on and compare 

various types of samplers and cassettes used in sampling to assess if there was an impact 

on the PLS predictive capacity. In this regard, 480 samples taken from six sampler types 

and two cassette types were compared creating 12 unique sampler/cassette combinations 

to determine if there was any error introduced into the model based solely on sampling 

technique. All the data used to create the models M1-M6 described here were collected 

using a Dorr Oliver sampler. It was determined that the samples generated on the same 

sampler/cassette combination as the training data had the lowest prediction error, indicating 

that the sampler and cassette have a substantial effect on the prediction, and the effect can 

be accounted for through modeling. The effect of this can be seen in Figure 6A where the 

Dorr Oliver samples (red dots) have the most linear relationship between the actual value 

and the predicted value. Some samplers lead the model to over predict the quartz on the 

filter (Sensidyne Dorr Oliver and the conductive Dorr Oliver) while other samplers lead the 

model to underpredict like the aluminum and GK2.69 samplers. By calculating correction 

factors and applying them to each sample based on the sampler/cassette used, a significant 

increase in predictive power (R2 = 0.7945 before correction (A) to R2 = 0.9497 after (B), 

Figure 6) were observed, thus, further emphasizing the need for ongoing enhancement of 

any computation pipeline such as suggested here. This observed difference to over or under 

predict when the model and test data are collected on different samplers is most likely due to 

the differences in the dispersion patterns of the airborne material when deposited on a filter 

as previously studied (Miller et al., 2013).

5. Conclusions

This study set about addressing the feasibility of implementing a combination of principal 

component analysis and partial least squares on FTIR spectrometer data to accurately predict 

the amount of crystalline silica deposited on a filter using lab-made mixtures of silica and 

various other minerals commonly found in the mining environment. The key driver for this 

research is to be able to create automatic multivariate predictive models to be included in 

a monitoring approach for on-site silica exposure predictions that are user-friendly and able 

to be continually trained and improved without sacrificing accuracy. The impact of this 

research will lead to a better understanding of the amount, types, and quality of real-world 
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mine dust samples that need to be collected to train a computational model to predict RCS 

deposition on a filter to be used for accurate end-of-shift silica exposure predictions.
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What’s Important About This Paper?

Respirable crystalline silica is a recognized and regulated health hazard commonly found 

in mining. Faster and cheaper ways to examine silica exposure need to be developed 

to protect worker overexposure and assess the need for corrective actions to reduce 

exposure. This study leverages the power of high-level computational modeling to 

analyze end-of-shift silica monitoring data obtained through Fourier transform infrared 

(FTIR) spectrometry.
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Figure 1. 
Preprocessing Comparison. Bar chart comparison between six potential preprocessing 

methods. All comparisons are by T test against the raw sample column and are not 

significant unless listed. Note the best performing data is with the blank subtracted and 

baseline corrected, but not significantly better than the raw data. ****; P<0.0001, **; 

P<0.01.
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Figure 2. 
M1-M4 Predicted vs. Measured. A-D. The gravimetrically measured quartz μg vs the PLS 

predicted quartz μg for models M1–M4 respectively. Note the higher loading samples found 

in M3 and M4. Evaluation of the absolute error difference between the measured and 

predicted quartz values vs the measured quartz values for M3 (E), M4 (F). Bar plot depicting 

the average absolute error from M1–M4 (G). Evaluation of the percent error ((absolute 

error / measured quartz μg)*100 ) vs the measured quartz values for M3 (H), M4 (I). Bar 

plot depicting the average percent error from M1-M4 (J). ****; P<0.0001, *; P<0.05.
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Figure 3. 
Summary statistics for M5 and M6. A-B. The gravimetrically measured quartz μg vs the 

PLS predicted quartz μg for models M5 and M6 respectively. Evaluation of the absolute 

error difference between the measured and predicted quartz values vs the measured quartz 

values and percent error ((absolute error / measured quartz μg)*100) vs the measured quartz 

values. Bar plot depicting the average absolute error from M5 and M6 (C). Bar plot 

depicting the average percent error from M5 and 64 (D). ***; P<0.001, *; P<0.05.
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Figure 4. 
Proposed PLS pipeline. Schematic illustration of the progression of raw data through the 

four major steps of the proposed pipeline.
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Figure 5. 
Quality control steps for the full FTIR spectra. A. 583 FTIR spectra overlaid which were 

generated using quartz-only samples. Inset PCA shows the most extreme loading samples 

(both high and low) are the most disparate compared to most of the model. B. 820 

FTIR spectra which were generated using the 583 quartz-only samples as well as samples 

generated in combination with one of the 13 confounding minerals. The same samples used 

in the full spectral model were cut down to further investigate the 767–816 cm−1 region of 

the spectra which contains the primary quartz signature. C. 583 FTIR spectra overlaid which 

were generated using quartz-only samples. D. 820 FTIR spectra which were generated using 

the 583 quartz-only samples as well as samples generated in combination with one of the 13 

confounding minerals. Note the relative spectral cleanliness of panel A and C compared to 

the addition of a single confounding mineral in B and D.
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Figure 6. 
Application of correction factor for sampler and cassette used. Scatterplot of the predicted 

vs measured quartz content before correction (A) and following correction for sampler type 

(B). Note the increase in R2 following the sampler specific correction (0.7945 to 0.9497).
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